How embedded memory in recurrent neural network architectures helps learning long-term temporal dependencies

نویسندگان

  • Tsungnan Lin
  • Bill G. Horne
  • C. Lee Giles
چکیده

Learning long-term temporal dependencies with recurrent neural networks can be a difficult problem. It has recently been shown that a class of recurrent neural networks called NARX networks perform much better than conventional recurrent neural networks for learning certain simple long-term dependency problems. The intuitive explanation for this behavior is that the output memories of a NARX network can be manifested as jump-ahead connections in the time-unfolded network. These jump-ahead connections can propagate gradient information more efficiently, thus reducing the sensitivity of the network to long-term dependencies. This work gives empirical justification to our hypothesis that similar improvements in learning long-term dependencies can be achieved with other classes of recurrent neural network axchitectures simply by increasing the order of the embedded memory. In particular we explore the impact of learning simple long-term dependency problems on three classes of recurrent neural network architectures: globally recurrent networks, locally recurrent networks, and NARX (output feedback) networks.Comparing the performance of these architectures with different orders of embedded memory on two simple long-term dependencies problems shows that all of these classes of network architectures demonstrate significant improvement on learning long-term dependencies when the orders of embedded memory are increased. These results can be important to a user comfortable with a specific recurrent neural network architecture because simply increasing the embedding memory order of that architecture will make it more robust to the problem of long-term dependency learning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pii: S0893-6080(98)00018-5

Learning long-term temporal dependencies with recurrent neural networks can be a difficult problem. It has recently been shown that a class of recurrent neural networks called NARX networks perform much better than conventional recurrent neural networks for learning certain simple long-term dependency problems. The intuitive explanation for this behavior is that the output memories of a NARX ne...

متن کامل

Speech Emotion Recognition Using Scalogram Based Deep Structure

Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...

متن کامل

Memory Augmented Neural Networks with Wormhole Connections

Recent empirical results on long-term dependency tasks have shown that neural networks augmented with an external memory can learn the long-term dependency tasks more easily and achieve better generalization than vanilla recurrent neural networks (RNN). We suggest that memory augmented neural networks can reduce the effects of vanishing gradients by creating shortcut (or wormhole) connections. ...

متن کامل

Deep Recurrent Neural Networks for Human Activity Recognition

Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convol...

متن کامل

Deep Q-Learning With Recurrent Neural Networks

Deep reinforcement learning models have proven to be successful at learning control policies image inputs. They have, however, struggled with learning policies that require longer term information. Recurrent neural network architectures have been used in tasks dealing with longer term dependencies between data points. We investigate these architectures to overcome the difficulties arising from ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 11 5  شماره 

صفحات  -

تاریخ انتشار 1998